skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yueying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress gene expression. In plants, the RNase III enzyme Dicer-like (DCL1) processes primary miRNAs (pri-miRNAs) into miRNAs. Here, we show that SMALL1 (SMA1), a homolog of the DEAD-box pre-mRNA splicing factor Prp28, plays essential roles in miRNA biogenesis in Arabidopsis. A hypomorphic sma1-1 mutation causes growth defects and reduces miRNA accumulation correlated with increased target transcript levels. SMA1 interacts with the DCL1 complex and positively influences pri-miRNA processing. Moreover, SMA1 binds the promoter region of genes encoding pri-miRNAs (MIRs) and is required for MIR transcription. Furthermore, SMA1 also enhances the abundance of the DCL1 protein levels through promoting the splicing of the DCL1 pre-mRNAs. Collectively, our data provide new insights into the function of SMA1/Prp28 in regulating miRNA abundance in plants. 
    more » « less
  2. Abstract

    2D materials exhibit strong excitonic effects due to low dimensionality and enhanced Coulomb interactions, resulting in fascinating many‐particle phenomena like excitons. Though perovskite is a classical type of material hosting abundant correlated electronic phases, freestanding 2D perovskite oxides are not easy to fabricate and yet to be extensively studied. Here the realization of large size (1 × 1 cm2) freestanding perovskite SrTiO3films, which show unexpected excitonic photoluminescence (PL) spectra and carrier dynamics, is reported. Two pronounced broad PL peaks emerge in 2D freestanding SrTiO3films at 2.34–2.4 and 1.8–1.9 eV, of which the 2.34–2.4 eV emission originates from self‐trapped excitons localized within TiO6octahedra, and the 1.8–1.9 eV peak from Ti vacancies. The time‐resolved PL shows a remarkable enhancement of nonradiative Auger recombination through three‐particle process, in which electron–hole excitons transfer their kinetic energy to other free electrons or holes. The results demonstrate unique excitonic properties in 2D perovskite SrTiO3films and unravel their potential for high‐performance optoelectronic devices.

     
    more » « less